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PREDICTABILITY OF SURFACE WATER POLLUTION LOADING IN PENNSYLVANIA
USING WATERSHED-BASED LANDSCAPE MEASUREMENTS'

Glen D. Johnson, Wayne L. Myers, and Ganapati P. Patil2

ABSTRACT: We formally evaluated the relationship between land-
scape characteristics and surface water quality in the state of
Pennsylvania (USA) by regressing two different types of pollutant
responses on landscape variables that were measured for whole
watersheds. One response was the monthly exported mass of nitro-
gen estimated from field measurements, while the other response
was a GIS-modeled pollution potential index. Regression models
were built by the stepwise selection protocol, choosing an optimal
set of landscape predictors. After factoring out the effect of physiog-
raphy, the dominant predictors were the proportion of "annual
herbaceous" land and "total herbaceous" land for the nitrogen load-
ing and pollution potential index, respectively. The strength of
these single predictors is encouraging because the marginal land
cover proportions are the simplest landscape measurements to
obtain once a land cover map is in hand; however, the optimal set of
predictors also included several measurements of spatial pattern.
Thus, for watersheds at this general hierarchical scale, gross land-
scape pattern may be an important influence on instream pollution
loading. Overall, there is strong evidence that using landscape
measurements alone, obtained solely from remotely sensed data,
can explain most of the water quality variability (R2 = approx. 0.75)
within these watersheds.
(KEY TERMS: landscape patterns; nutrient loading; pollution
potential; water quality; watersheds; multi-scale relationships.)

INTRODUCTION:

Ecological hierarchy theory establishes a frame-
work for explaining how large-scale characteristics
of ecosystems can constrain smaller-scaled character-
istics (Urban et al., 1987; O'Neill et al., 1989). An
example of such an inter-scale environmental
relationship is the influence of gross land use charac-
teristics on local surface water quality. Indeed, for all
the improvements in water quality associated with

modern controls on point-source discharges, local
water quality is still constrained by nonpoint-source
pollution. Since land use is generally reflected by land
cover (vegetation type), then whole watersheds may
be evaluated with respect to water quality risk by
characterizing land cover proportions and patterns
(O'Neill et al., 1997). Watershed-wide landscape char-
acteristics that are significantly correlated with local
water quality may then serve as landscape-scale indi-
cators of environmental condition, as also sought by
other researchers (Aspinall and Pearson, 2000; Jones
et al., 1997).

A common theme that arises from previous
research in this area is that as a watershed gets larg-
er, corresponding to higher order drainage basins,
land cover proportions alone explain most of the
water quality variability; whereas for smaller water-
sheds, especially those for first order headwater
streams, the spatial pattern of land cover becomes
more important (Graham et at, 1991; Hunsaker and
Levine, 1995; Roth et al., 1996). This indicates that
the feasibility of using watershed-wide marginal land
cover proportions and/or spatial pattern measure-
ments for predicting water quality depends on the
hierarchical scale of a watershed.

This article presents an evaluation of the relation-
ship between surface water pollution loading and
landscape characteristics for watersheds in the state
of Pennsylvania (USA) that are each about 1/100th
the size of the state. Using data from previous stud-
ies, linear models were developed for choosing an opti-
mal set of landscape predictors that constituted both
land cover proportions and pattern measurements.
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Research Institute, University Park, Pennsylvania 16802; and Center for Statistical Ecology and Environmental Statistics, Penn State Uni-
versity, 421 Thomas Bldg., University Park, Pennsylvania 16802 (E-MaillPatil: gpp@stat.psu.edu).
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SURFACE WATER POLLUTION ASSESSMENT

Nitrogen Loading

A recent study (Nizeyimana et al., 1997) was con-
ducted to assess surface-water nutrient loading in
Pennsylvania watersheds. The primary purpose was
to quantify the various sources of non-point source
(NPS) nutrient loading. Watersheds, as seen in the
top of Figure 1, were delineated by choosing 85 Water
Quality Network stations throughout Pennsylvania,
then aggregating detailed subwatershed boundaries
that were previously digitized by the U.S. Geological
Survey. Each resulting NPS watershed then drains to
one of the 85 network stations. As part of this study,
total levels of both nitrogen and phosphorous were
obtained for each watershed by applying flow-weight-
ed averaging techniques to monthly in-stream concen-
trations from the previous five years. The result is an
estimate of the monthly exported mass in kilograms
(kg).

Meanwhile, Johnson et al. (in press) obtained land-
scape measurements on a different set of watersheds
that are based on the state water plan, as discussed
in the next section and delineated in the bottom of
Figure 1. Since there was not a perfect match
between the two watershed delineations, some of the
NPS watersheds were aggregated to equal the area of
a state water plan watershed, as identified in the top
of Figure 1. These watersheds are then added to those
for which there is an exact or very close match with
the state water plan-based watersheds and the final
set are shaded in the bottom of Figure 1. The result is
a sample of 30 watersheds across the state for which
we have measurements of both landscape pattern and
nutrient loading.

For the NPS watersheds that were aggregated, the
nutrient loading was summed. All watershed-based
estimates of total nitrogen and total phosphorous, in
kilograms (kg), were divided by the total area in
hectares (ha) in order to adjust for the varying water-
shed sizes. Nitrogen was then plotted against phos-
phorous, as seen in Figure 2. Clearly, one only needs
to pursue either nitrogen or phosphorous as an indi-
cator of nutrient loading since they are so highly lin-
early correlated with each other. Therefore, nitrogen
was chosen because it is suspected to yield better
quality data than phosphorous. This suspicion arises
because nitrogen loading is always reported well
above zero (minimum for these 30 watersheds = 27.12
kg/ha), whereas phosphorous loading is sometimes
reported at less than 1 kg/ha, thus indicating that
there were likely to be more measurements near or
below analytical detection limits in the original water
quality network samples.

NPS watersheds that can be aggregated (in gray)
up to state water plan watersheds

All watersheds from the state water plan
-- that can be compared to the NPS results

Figure 1. Watersheds From the NPS Study (above), for Which
Nutrient Loadings Are Available, and Waterstieds Based on the

State Water Plan (below), for Which Landscape Pattern
Measurements Are Available. Those NPS watersheds

that can be aggregated to equal a state water plan
watershed are indicated by gray above, and the final

final set of watersheds that have both landscape
measurements and nutrient loadings are in gray below.
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Predictability of Surface Water Pollution Loading in Pennsylvania Using Watershed-Based Landscape Measurements

Since the objective of this study is to evaluate the
effect of land use patterns on surface-water nutrient
loading, it was considered to subtract the portion of
total nitrogen loading that was estimated by Nizeyi-
mana et al. (1997) to be attributed to atmospheric
deposition. However, of the two primary components
of atmospheric nitrogen, ammonium (NH4) was deter-
mined to come almost entirely from volatilization
from manure and other fertilizers; while the other pri-
mary component, nitrogen oxides (NOr) was deter-
mined to have about one-third contributed by manure
and other fertilizers and about two-thirds from indus-
trial/urban sources. Also, natural sources of atmo-
spheric deposition of nitrogen was considered
negligible (Nizeyimana et al., 1997). Therefore, since
much of the source of atmospheric nitrogen deposition
can be attributed to local land use activity and natu-
ral "background" sources are negligible, total nitrogen
loading was kept intact. A thematic presentation of
total nitrogen loading is seen in Figure 3, along with
the physiographic provinces of Pennsylvania, where
the major provinces are labeled.

Figure 3. Thematic Presentation of Nitrogen Loadings
in Kilograms Per Hectare for 30 Watersheds.

Pollution Potential Index

Pennsylvania watersheds that are delineated by
the state water plan watershed boundaries were

evaluated in an earlier study (Hamlett et al., 1992)
through GIS modeling for ranking each watershed for
its nonpoint source pollution potential. Various
statewide data layers (coverages) were analyzed to
produce four different indexes: a runoff index (RI), a
chemical use index (CUI), a sediment production
index (SPI), and an animal loading index (ALl). An
overall pollution potential index (PPI) was then com-
puted for each watershed by:

PPI, = W1(R11) + W2(SPI) + W3(ALI) + W4(CUI1)

(1)

for the i1' watershed, where W1 to W4 are weights
assigned to each input index. The results represent
per-acre average values. Petersen et al. (1991) show
results for an unweighted version of Equation (1) (W
= 0.25 forj = 1,...,4) and a weighted version where the
chemical use index is weighted downward to W4 =
0.10 and the remaining input indexes were equally
weighted at 0.30. Also, since the model depends heav-
ily on land cover types, results were presented for
both "agricultural land" and "all land." While the pur-
pose of the initial study was to evaluate "agricultural"
pollution potential, the purpose of this study is to
evaluate overall pollution potential. Therefore, we are
fortunate that results were also presented by
Petersen et al. (1991) for "all lands."

Using the "equally weighted all lands" category, the
resulting ranking of the watersheds are presented
thematically in Figure 4. For graphical display and
regression modeling, the ranks are presented in
reverse of how they are reported by Petersen et al.
(1991) so that the increasing pollution potential is
represented by increasing numerical value. The
watersheds are stratified geographically in Figure 4
by aggregating physiographic sections, which are
nested within physiographic provinces, in order to
form.more homogeneous areas with respect to PPI
ranks.

The original state water plan delineation, for which
PPI values were obtained, consists of 104 watersheds;
however, the delineation used for obtaining land-
scape measurements consists of 102 watersheds
resulting from a more spatially accurate aggregation
of smaller watersheds that were in turn originally
digitized by the USGS. Two of the USGS-source
watersheds each consist of two state water plan
watersheds; therefore, out of the resulting 102 USGS-
source watersheds, two of them did not have direct
PPI assessments. For this reason, analysis was limit-
ed to 100 of the USGS-source watersheds for which
both PPI values and landscape measurements were
available. The two "missing" watersheds are indicated
by diagonal hatching in Figure 4.
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Physiographic stratification indicated by heavy black lines

Figure 4. Thematic Presentation of the Pollution Potential Ranking for Each of the State Water Plan-Based
Watersheds. Physiographic Stratification delineates more homogeneous geographic areas.

SELECTING AN INITIAL SET OF
LANDSCAPE PATTERN VARIABLES

In a separate study (Johnson et al., in press), land-
scape variables were measured for 102 of the state
water plan-based watersheds through application of
the FRAGSTATS software (McGarigal and Marks,
1995).

Land cover data, from which measurements were
obtained, consisted of an eight-category raster map of
Pennsylvania that was in turn derived from LAND-
SAT TM images with a pixel resolution of 30 meters.
Details of how the raw satellite data was processed to
derive the raster maps is available through metatdata
located at the Pennsylvania Spatial Data Access web
page (http:llwww.pasda.psu.edu), under the category
of "Terrabyte images." The method and software is
available as C-language programs for general use
under the acronym PHASES (Myers, 1999).

The land cover categories are water, conifer forest,
mixed forest, broadleaf forest, transitional, perennial

herbaceous, annual herbaceous, and terrestrial
unvegetated. The category of transitional land derives
from a heterogeneous mix of land cover types; peren-
nial herbaceous is primarily grassland that occurs in
small patches just about everywhere, but occurs in
larger patches where pastureland is present; annual
herbaceous is primarily cropland and is often adjacent
to patches of perennial herbaceous land; and terres-
trial unvegetated is primarily urbanized land. The
remaining category labels are self explanatory. As
listed at the end of Table 1 landstats, marginal (non-
spatial) land cover measurements that were included
for this study are a summation of all three forest
types, then both herbaceous types and finally terres-
trial unvegetated land cover.

A new multi-resolution characterization of spatial
pattern, termed a conditional entropy profile (John-
son et al., 1995; Johnson and Patil, 1998; Johnson et
al., 1998, 1999) was also obtained for all of the state
water plan-based watersheds (Johnson et al., in
press). These profiles quantify landscape fragmenta-
tion by measuring entropy of the spatial distribution
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of land cover categories at a given raster map resolu-
tion in a way that is conditional on the categories of a
coarser-resolution map. When computed for multiple
resolutions, ranging from the "floor" that is provided
by the original raster map to a resolution beyond
which conditional entropy does not change much, a
profile is traced out that reflects aspects of the under-
lying spatial pattern. Increasingly degraded resolu-
tions are obtained by a resampling filter. An example
profile and its parameterization is seen in Figure 5.
Basically, A is the extent of information that is lost
from degrading the map resolution, B is the rate of
information loss, and C is the asymtotic conditional
entropy that is highly correlated with the entropy of
the marginal (nonspatial) land cover distribution.

Variable Description Code

Patch Density PD

Mean Patch Size MPS

Patch Size Coefficient of Variation PSCV

Edge Density ED

Landscape Shape Index LSI

Area-Weighted Mean Shape Index AWMSI

Double-Log Fractal dimension DLFD

Area-Weighted Mean Patch Fractal Dimension AWMPFD

Shannon Evenness Index SHEI

Interspersion and Juxtaposition Index IJI

Contagion* CONTAG

Total Forest Cover TOT.FOREST

Total Herbaceous Cover TOT.HERB

Terrestrial Unvegetated TU

*pjxel order preserved when measuring contagion.

A set of variables was sought that show little to no
correlation among themselves in order to avoid multi-
collinearity in regression modeling. Therefore, an
approximately orthogonal subset of spatial pattern
variables was obtained by applying principal compo-
nents analysis to the full set of pattern variables in
Table 1 landstats along with nonlinear regression
estimates of the conditional entropy profile parame-
ters A, B, and C. The marginal land cover proportions
were excluded from this data reduction exercise
because it was desired to include all of the land cover
proportions in the set of potential predictors. Since
this set of variables consists of differing measurement
units, eigen analysis was performed on the correlation

matrix. Results for the 30 watersheds that shared
both landscape and nitrogen loading measurements
are presented here. When re-applied to all of the 102
watersheds for which there are landscape measure-
ments, the results were essentially the same and are
therefore not reproduced here.

As seen in Figure 6 the first four components
explained over 90 percent of the variability in the
original multivariate data set. Correlations between
the original variables and the principal components,
which are simply the eigenvector elements (loadings)
multiplied by the square root of the corresponding
eigenvalue (Stiteler, 1979), are reported in Table 2.

Relative Importance of Principal Components

5.1

I
TABLE 1. Landscape Variables Measured for Pennsylvania

Watersheds (note that diagonal pixels were
included when determining patches).

0 1 2 3 4 5 6 7 8 9 10

Resdua(2cIudeIengthdpxsi side)

Figure 5. Anatomy of a Conditional Entropy Profile.

0.628

>

0.796

0.886

0.932
0.981 0.989 0.994 0.997 0.999

comp. I comp. 2comp. 3Comp. 4comp. 5Comp. eComp. 7Comp. 8comp. romp. 10

Figure 6. Variance Contributed by the First
Ten Principal Components; Cumulative
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TABLE 2. Correlations Between the Original Variables and the First Five Principal Components.

Variable Comp 1 Comp 2 Comp 3 Comp 4 Cornp 5

PD 0.94 -0.18 0.20 0.07 -0.09

MPS -0.93 0.22 -0.14 -0.08 0.14

PSCV -0.78 0.02 0.53 0.1 -0.24

ED 0.94 -0.24 0.13 0.03 0.12

LSI 0.23 0.69 0.07 0.62 0.26

AWMSI -0.84 -0.09 0.46 0.18 -0.12

DLFD 0.6 -0.04 0.63 -0.24 039

AWMPFD -0.93 -0.01 0.31 -0.1 -0 04

SHEI 0.96 0.19 0.10 -0.07 -0.10

IJI 0.87 0.15 0.15 0.07 -0.38

CONTAG -0.99 -0.02 -0.10 0.01 0.05

A 0.00 0.93 -0.20 -0.15 -0.11

B 0.26 -0.84 -0.3 0.3 -0.01

C 0.94 0.29 0.01 -0.02 -0.03

The first component is very highly correlated with
those variables that are in turn highly correlated with
the marginal land cover distribution. This component
reveals the contrast between watersheds that tend
towards being more fragmented and more evenly dis-
tributed with smaller patches (positive loadings) and
those with a high degree of patch coherence (negative
loadings). Although many of the original variables
could be chosen for representing the first component,
contagion (CONTAG) was chosen because it is the
most highly correlated and is a very familiar mea-
surement in landscape ecology.

The second component is mostly correlated with
the conditional entropy profile parameter estimates A
and B (note that C is highly correlated with compo-
nent 1, as expected). This component contrasts high
values of A, and secondarily the landscape shape
index (LSI), as reflected by positive loadings, with
high values of B, as reflected by negative loadings.

The third component is most highly correlated with
the fractal dimension characterization of patch shape
(DLFD) and secondarily with the patch size coeffi-
cient of variation (PSCV). Meanwhile, the fourth com-
ponent is dominated by the landscape shape index.

In view of the results of principal components anal-
ysis, the spatial pattern variables that were included
in the set of potential regressors were patch size coef-
ficient of variation (PSCV), landscape shape index
(LSI), fractal dimension (DLFD), contagion (CON-
TAG), and the conditional entropy profile values

A and B. Finally, the proportions of annual herba-
ceous land (ANN.HERB), total herbaceous land
(TOT.HERB), which is the sum of annual and
perennial herbaceous land, and total forest land
(TOT.FOREST), which is the sum of broadleaf, conifer
and mixed forest lands, were added to the set of
potential regressors.

Relationships among the final set of potential land-
scape predictors for the sample of 30 watersheds con-
taining both landscape and nitrogen loading
measurements are seen in Figure 7, where total nitro-
gen is also included as a log transform (logN) for rea-
Sons discussed later. One expects t:he proportion of
annual herbaceous land to be a ve:ry strong, if not
dominant, predictor of total nitrogen. loading since it
consists mostly of cropland. Agriculture was deter-
mined to be a main source of nitrogen loading in the
initial study (Nizeyimana et al., 1997).

Meanwhile, relationships among the variables for
all of the 102 watersheds are presented in Figure 8
along with the inverse of the PPI rank (PPI.INV).

The different land cover proportions plotted in Fig-
ures 7 and 8 are highly inter-correlated, as expected,
and some redundancy exists between PSCV and
CONTAG as well as between the values of A and B;
however, it is desired to include all of these variables
in the initial set of landscape measurements in order
to see which may be chosen over others as part of a
stepwise model building protocol, as discussed in the
next section.
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psCv

1.5

Figure 7. Pairwise Scatterplots of the Final Set of Potential Predictor Variables (regressors) Along With the
Natural Logarithm of Total Nitrogen Per Hectare (logN) for 30 Watersheds. The spatial pattern variables

are as follows: PSCV = Patch Size Coefficient of Variation; LSI = Landscape Shape Index; DLFD =
Double Log Fractal Dimension; and CONTAG = contagion and conditional entropy profile parameter

estimates (A,B). Marginal land cover proportions are: ANN.HERB = annual herbaceous,
TOT.FOREST = totalforest, and TOT.HERB = total herbaceous.

LINEAR MODELS FOR RELATING
WATER POLLUTION LOADING

TO LANDSCAPE VARIABLES

Stepwise regression was applied separately for
each response variable — total nitrogen and pollution
potential index — in order to build an optimal linear
model from the potential set of regressors in Figures
7 and 8. The criterion for choosing the best set of pre-
dictors was a modification of Mallow's Cp statistic
(Mallows, 1973), known as the Akaike Information
Criterion (AIC) (Akaike, 1974). The AIC is related to
the Cp statistic by the relation

AIC = n)

for n observations and 2 equals the mean squared
error of the initial model before adding or deleting a
term to yield the "new" p-parameter model (MathSoft,
Inc., 1997:132). The result is

AIC=RSS(p)+MSE*2*p, (2)

where RSS(p) is the residual sum of squares from the
new model defined by p terms (k predictors plus the
intercept) and MSE is the mean squared error from
the original model prior to deleting or adding a term.

The automated stepwise selection protocol works
by choosing the set of predictors that minimizes the
AIC statistic. Critical F values for deciding whether
or not to include or remove predictor variables was set
at 2, subsequently erring in favor of retaining large
sets of predictor variables.

Models were checked by the usual diagnostic
graphics. In addition, partial residual plots were
obtained for each regressor in a model. Following
Montgomery and Peck (1982), the th partial residual
for the regressor x is

ej =y — 13i;i — — j_ix,—i — Ij+1XiJ+1

I3kXik =e1+tx fori= 1,...,n.

I,

U •,s.1

IiI.,'
S'S's

S

Di.FD

f's . -I'.I,
CCNTA3

I
S

;: ..,.
5'

I S •S 5.5$'
SI'..

50
40
3D

20

0.4

0.2

0.0

31

23

I.'
•S •5•s#e•

.kS' '
I

ANN. HERB

s1.
u5.ta

'S
I $ IS,; 'it

•I 5'I

• .1..

S

I'lWS

TOT.HERB

SI,'

'1$';,
I,

5%.14 JcS. 0T.FES

U4'.
5•

U

Is,.5
U#5 I

5
4

U•

A

•1. S5

.*
S.';'

is,.
S

I4

S'sI
Pt%.
TI,'..

I I I I I I I I II II P I I I I I

0 1.45 150 1.56 o,.iio.no.n 0.2 0.5 0.8 0.2 0.4 0.6

B

I •
III, kgN

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 827 JAWRA

(3)



Johnson, Myers, and Path

gure 8. Pairwise Scatterplots of the Set of Potential Predictor Variables (regressors) Along
With the Inverse of the Pollution Potential Index (PPI.INV) for 102 Watersheds.

The landscape variables are explained in Figure 7.

These partial residual plots display the relationship
between y and the regressor x after the effect of the
other regressors x1(i have been removed, therefore
more clearly showing the influence of xj, given the
other regressors. Along with providing a check for
outliers and inequality of variance, these plots also
indicate more precisely how to transform the data to
achieve linearity than do the usual residual plots.

Predicting In-Stream Nitrogen Loading

Initial analysis was performed using total nitrogen
(kgfha) as the response variable; however, the result-
ing model was excessively influenced by two water-
sheds from the Piedmont physiographic province (see
Figure 3). A natural log transform substantially
reduced the domineering influence of these two water-
sheds and yielded other diagnostics that were much
better; therefore, all analyses proceeded with the log
of total nitrogen (logN) as the response variable.

The graphical relationship of logN with the poten-
tial predictor variables is seen in Figure 7. Although

this shows a fairly strong linear relaiionship between
logN and the marginal land cover measurements, that
in turn all appear highly correlated among them-
selves, some of the other potential predictors may also
explain a significant portion of th.e variability in
observed logN. Actually, scatter diagrams can be mis-
leading in the case of multiple regression, as pointed
out by Montgomery and Peck (1982:122), who cite
Daniel and Wood (1980).

Preliminary analysis showed that when all 30 of
the NPS watersheds were included, the only variable
retained by the stepwise selection procedure was the
proportion of annual herbaceous larLd (ANN.HERB);
however, when separate analyses were performed
within each major physiographic province, very differ-
ent results were obtained. For the :12 watersheds of
the Appalachian Plateaus, all but the landscape
shape index were retained. Since the Ridge and Valley
had only seven NPS watersheds, they were combined
with the Piedmont, which reveals similar forest frag-
mentation patterns. For the 18 watersheds of the
combined Piedmont/Ridge and Valley Province group,
annual herbaceous land was retained along with the

0 0.1 0.3 0.5 0,7
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fractal dimension (DLFD) and both the A and B val-
ues of the conditional entropy profiles.

Upon seeing large differences in the resulting mod-
els, given the physiographic region, and desiring to
maximize the residual degrees of freedom associated
with any final model, the analysis was continued by
combining all 30 watersheds from across the state
and including an indicator (0,1) variable (sometimes
called a dummy variable) for designating membership
in a physiographic region. The indicator variable,
which was forced to be retained by the stepwise proto-
col, was coded with "1" if the corresponding watershed
was from the Piedmont/Ridge and Valley group, and
with a "0" otherwise. The resulting parameter esti-
mate revealed the increase (or decrease) in total nitro-
gen loading as one moves from the Appalachian
Plateaus to the PiedmontlRidge and Valley group. A
further advantage of factoring out pyhsiographic
regions is to reduce deleterious effects of possible spa-
tial autocorrelation.

Coefficient estimates for the model that minimized
the AIC statistic (AIC = 2.84) are reported in Table 3,
where the dummy variable indicating the effect of
province group is labeled as PIED.RV.

Diagnostic plots for the model defined in Table 3
revealed a strong linear relationship between the fit-
ted and observed values, along with randomly scat-
tered residuals. A Q/Q plot revealed somewhat heavy
tails in the distribution of residuals; however, none of
these observations was excessively influential accord-
ing to Cook's Distance. Generally, a Cook's Distance of
1 or greater is considered to reveal an overly influen-
tial observation (Montgomery and Peck, 1982; Neter
et al., 1985) which is far greater than the worst case.
These diagnostics therefore revealed a very accept-
able model.

The partial residual plots for each quantitative pre-
dictor in Table 3 appear in Figure 9 where the lines of
fit have slopes equal to the parameter estimates in
Table 3. The plots in Figure 9 indicate a linear trend
for each predictor, especially for annual herbaceous
land (ANN.HERB), and no data transformations
appear to be necessary.

All possible interactions between the quantitative
variables and the indicator variable were investigat-
ed, but none of these interactions turned out to be at
all significant. When interactions were evaluated
among the quantitative variables, the two-way inter-
action between LSI and ANN.HERB was significant
(p = 0.025). However, when the model parameters
were recomputed, including LSI*ANN.HERB as the
only interaction term, the estimate of the ANN.HERB
coefficient became negative, which is nonsense.
Therefore, the initial additive model in Table 3 was
retained.

Spatial Autocorrelation. The presence of spatial
autocorrelation was evaluated by plotting residuals
from the model defined in Table 3 as a function of
geographic distance of the center of each watershed
from the center of the watershed yielding the maxi-
mum residual. Selecting the initial watershed (dis-
tance = 0) is rather arbitrary, but it was felt that the
most likely trend would be a general decrease in
nitrogen loading as one moves away from a "hot-spot"
watershed; therefore starting with the watershed
yielding the maximum residual may help distinguish
such a downward trend. Finally, since the indicator
variable Pied.RV already serves to factor out a major
spatial component, distance measurements were
made within each of the two physiographic province
groups.

TABLE 3. Coefficients and Corresponding Statistics From Regressing the Log of Total Nitrogen/ha
Against Quantitative Landscape Variables and an Indicator Variable for Specifying Membership in a

Physiographic Province Group [mean squared error (24 d.f.) = 0.075 and multiple R2 = 0.74].

Regressor* Value
Standard

Error t Value Pr(> It I)

Intercept 12.7805 4.9614 2.5760 0.0166

Pied.RV 0.4178 0.1950 2.1424 0.0425

LSI 0.0034 0.0015 2.3090 0.0299

DLFD -5.8933 3. 1854 -1.8501 0.0766

ANN.HERB 3.2441 0.8123 3.9936 0.0005

A -0.4102 0.2271 -1.8058 0.0835

*Pjed.RV reflects change due to membership in the Piedmont/Ridge and Valley group of physiographic provinces, relative to the Appalachian
Plateau. LSI = Landscape Shape Index; DLFD = Fractal Dimension Estimated; ANN.HERB = Proportion of Annual Herbaceous Land; and
A = Estimated of Conditional Entropy Profile Depth.
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Figure 9. Partial Residual Plots for the Predictors Listed in Table 3.
Slopes of the fitted lines equal the parameter estimates in Table 3.

Figure 10 plots the residuals as a function of dis-
tance. Keep in mind that an initial downward trend
will always occur between the initial watershed and
the next closest one since the initial one was chosen
from yielding the largest residual; therefore, focus
should be on all but the initial watershed. The Pied-
mont/Ridge and Valley did not visually reveal any
spatial dependence, which was quite encouraging;
however, the Appalachian Plateaus did reveal a down-
ward trend that was followed by an upturn. This
quadratic type response is due to a downward trend
as one moves from watersheds near Pittsburgh on
northward through mixed agricultural areas, then
eastward to mostly forested areas, then further east-
ward to the Pocono region along the Delaware River.

As an attempt to overcome the autocorrelated
residuals in the Appalachian Plateaus, watersheds in
this physiographic province were further separated
into two groups according to the finer scaled physio-
graphic sections. After forcing two indicator variables
to be retained for representing three spatial groups,
the stepwise selection protocol yielded a similar model
to that in Table 3 with the exception that fractal
dimension (DLFD) was replaced by contagion (CON-
TAG).

Diagnostic plots, however, indicated that model
quality had somewhat decreased. Furthermore, small
sample sizes within each of the newly defined groups
of physiographic sections within the Appalachian
Plateaus physiographic province made it difficult to
truly discern any residual autocorrelation. Therefore,
the model in Table 3 was chosen. One should consid-
er, however, that the mean squared error may slightly
underestimate the true variance due to some positive
spatial autocorrelation.

Predicting a Pollution Potential Index

Unlike with nitrogen loading, the pollution poten-
tial data can be treated as observations on a popula-
tion of watersheds (100 out of 1.02). Since the
computed linear coefficients are actually parameter
values, standard errors are not relevant and thus are
not reported. However, it is still sensible to choose an
optimal set of predictors by mini:mizing the AIC
statistic. Furthermore, t-scores and p values are still
reported in order to see the significance of each term,
relative to the other terms.
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Figure 10. Residuals Plotted as a Function of Geographic
Distance of the Corresponding Watershed From the

Watershed That Yielded the Maximum Residual, Given
Either the Appalachian Plateau or the PiedmontlRidge

and Valley Physiographic Province Group.

For the purpose of regression modeling, the five
geographic strata that appear in Figure 4 are repre-
sented by four indicator variables that are explained
in Table 4 These indicators were forced to be retained
by the model selection protocol in order to factor out
physiographic effects and minimize possible spatial
autocorrelation. The resulting parameter estimates
reveal the increase (or decrease) in average PPI rank
as one moves from the "Pittsburgh Plateaus/Alleghe-
fly Mountains" group to the group being represented
by the respective indicator variable. The model that
minimized the AIC statistic is presented in Table 4.

Diagnostic plots for the model defined in Table 4
revealed a very strong linear relationship between the
fitted and observed values, along with randomly scat-
tered residuals. A Q/Q plot revealed that the residuals

are closely approximated by the normal distribution.
Further, none of these observations are excessively
influential according to Cook's Distance. Consequent-
ly, these diagnostics reveal a very acceptable model.

The partial residual plots for each quantitative pre-
dictor in Table 4 appear in Figure 11 The lines of fit in
Figure 11 have slopes equal to the parameter esti-
mates in Table 4. The plots in Figure 11 indicate a
linear trend for each predictor, and no data transfor-
mations appear to be necessary.

INTERPRETATION

The chosen model for relating total nitrogen load-
ing (kg/ha) to landscape characteristics within Penn-
sylvania watersheds that are delineated based on the
state water plan is as follows:

ln(N) = 12.78 + 0.42(Pied.RV) + 3.24(ANN.HERB)

+ 0.0034(LSI) - 5.89(DLFD)

- 0.41(A) (4)

where the associated statistics for the parameter esti-
mates based on a sample of 30 watersheds, and an
explanation of the variable labels are found in Table
3. The associated variance cy2 is estimated by MSE =
0.075, although this might be a slight underestimate
due to some spatial autocorrelation in the Appalachi-
an Plateaus.

As expected, the dominant regressor is the propor-
tion of annual herbaceous land which, in turn, is
mainly cropland. Further, given the proportion of
annual herbaceous land and physiographic member-
ship, landscape pattern strengthened the explanation
of nutrient loading variability among these Pennsyl-
vania watersheds, as measured through total nitro-
gen loading. The landscape shape index (LSI), the
fractal dimension estimate (DLFD), and the estimate
of conditional entropy profile "depth" (A) were all
retained by the stepwise selection procedure that
aims to minimize the residual sum of squares and cor-
responding AIC statistic out of all possible regres-
sions.

The slight, but significant, positive relation to the
landscape shape index indicates that nitrogen loading
may be expected to increase as the landscape becomes
more fragmented, resulting in more edges.

A negative relation to the value "A" is not readily
interpretable; however, it is noteworthy that this pre-
dictor and LSI were both always retained by the step-
wise selection procedure whether the physiography
indicator variables were designed to differentiate
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TABLE 4. Linear Coefficients From Regressing the PPI Rank Against Quantitative Landscale Variables and
Physiographic Indicator Variables Imean squared error = 245.55 (90 d.f.) and multiple R2 = 0.76].

Regressor* Coefficient t Value Pr(> It I)

Intercept 445.2282 1.79 0.0762

APP. MOUNTAIN -6.2750 -1.09 0.2788

PIED. and GR. VALLEY 15.7200 2.44 0.0167

LOW and POCONO -2.35 16 -0.35 0.7252

HIGH PLATEAUS -12.4292 -1.88 0.0638

DLFD -330.2211 -2.46 0.0159

CONTAG -0.9732
•

-2.19 0.0311

TOT.HERB 118.9058 5.01 0.0000

A 27.8007 2.26 0.0261

B 110.3800 2.61 0.0107

*Labels for the quantitative variables are explained in Figure 8. APP. MOUNTAIN = Appalachian Mountain Section; PIEI). and GR. VALLEY
= the Piedmont Plateau and Great Valley Section; LOW and POCONO = Glaciated Low and Pocono Plateau Sections; and HIGH PLATEAUS
= High and Mountainous High Plateau Sections.

I. •
• • :

•
•.•, I

TOT.AG

• • ...: ..:_.—::• •
0 . •

Figure 11. Partial Residual Plots for the Quantitative Predictors Listed in Table 4.
Slopes of the fitted lines equal the linear coefficients in Table 4.
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among the three major provinces (results not shown
here), the two province groups (Appalachian Plateaus
vs. Piedmont/Ridge and Valley) or the three groups
that consisted of the Piedmont/Ridge and Valley and
two subareas of the Appalachian Plateaus.

The chosen model for relating the pollution poten-
tial index (PPI) rank to landscape characteristics
within Pennsylvania watersheds that are delineated
based on the state water plan is as follows:

PPI rank = 445.2 - 6.3(APP.MOUNTAJN)

+15.72(PIED. and GR.VALLEY)

- 2.35(LOW and POCONO)

repeated for the PPI values. Their corresponding
conditional entropy profiles appear in Figures 12 and
13. For both nitrogen loading and the PPI, the three
least polluted watersheds are clearly separate from
the others which, in turn, are essentially grouped
together. These three watersheds with the lowest pol-
lution potential are mostly forested watersheds from
the High Plateaus or Poconos and consistently reveal
lower profiles that are "intrinsically less fragmented"
than the other six profiles. Although these profiles do
not reveal apparently large differences in A and B
values, the model for predicting nitrogen loading ben-
efitted from including A and the ability to predict pol-
lution potential was strengthened from including both
A and B.

- 12.43(HIGH PLATEAUS)

+ 118.9(TOT.AG) - 330.2(DLFD)

- 1.0(CONTAG) + 27.8(A) + 110.4(B)

(5)

where an explanation of the variable labels is found
in Figure 8 and Table 4.

The dominant regressor is the proportion of total
herbaceous land; however, results show that given the
proportion of total herbaceous land and physiograph-
ic membership, landscape pattern strengthens the
explanation of surface water pollution potential vari-
ability among these Pennsylvania watersheds.

The negative relation to fractal dimension is con-
sistent with the nitrogen loading results. A negative
relation makes sense because when landscape patches
are left to natural forces, they tend to have more
irregular outlines, which is reflected by an increasing
fractal dimension (or perimeter/area scaling expo-
nent) (Johnson et al., 1995), while patches that are
created and maintained by humans tend to have
straight edges, especially with cropland that is in
turn largely responsible for nutrient loading. As the
average landscape patch tends towards having a
straighter edge, this is reflected by a fractal dimen-
sion estimate that tends towards a value of 1, the
dimension of a Euclidean line. A negative relation to
contagion is likely due to the highest levels of conta-
gion being associated with mostly forested water-
sheds. Although both conditional entropy profile
variables A and B are retained by the stepwise proto-
col, a mechanistic explanation of their relation to PPI
is not necessarily clear.

As an exploratory exercise, nine watersheds were
chosen to include the top three, middle three, and
lowest three nitrogen loading values, and this was
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In summary, the best landscape-level predictor of
water pollution for these Pennsylvania watersheds is
the marginal land cover proportions. A majority of
nitrogen loading variability was explained by the pro-
portion of annual herbaceous land, which is mostly
row crops. Meanwhile, variability of the pollution
potential index was largely explained by total herba-
ceous land, which includes annual and perennial
herbaceous land. This finding agrees with results by
Roth et al. (1996), who found that stream biotic
integrity was significantly correlated with the propor-
tion of agricultural land throughout a whole water-
shed. These authors further concluded that stream
conditions are primarily determined by regional land
use, overwhelming the ability of local riparian vegeta-
tion to support high quality habitat. Also, Hunsaker
and Levine (1995) determined that nitrogen, phospho-
rous and conductivity were all primarily dictated by
land use proportions and they further cite other stud-
ies that lead to similar findings. This is all quite
encouraging because once a reliable land cover map is
in place, the marginal land cover proportions are
readily available; therefore, without any further infor-
mation, one can make a fairly strong prediction of
surface-water quality within a watershed.

We, however, found that additional measurements
of spatial pattern for these watershed-delineated
landscapes in Pennsylvania can significantly
strengthen the predictability of pollution loading
within the watershed. Furthermore, some aspects of
the multi-resolution conditional entropy profiles were
consistently retained by an objective variable selec-
tion protocol.
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